

Stopify

[image: _images/logo.png]

by Samuel Baxter, Arjun Guha, Shriram Krishnamurthi, Rachit Nigam, and Joe Gibbs Politz

Table of Contents

Stopify User's Manual

	Acknowledgements

	Quick Start
	Instructions

	Testing

	Overview
	The Command-Line Compiler

	Runtime Configuration

	The AsyncRun Interface

	The Online Compiler

	Compiler Configuration

	Illustrative Examples
	A Blocking sleep Function

	A Blocking prompt Function

	Release Notes
	Stopify (working version)

	Stopify 0.1.0

Stopify is a JavaScript-to-JavaScript compiler that makes JavaScript a better
target language for high-level languages and web-based programming tools.
Stopify enhances JavaScript with debugging abstractions, blocking operations,
and support for long-running computations.

Suppose you have a compiler C from language L to JavaScript. You
can apply Stopify to the output of C and leave C almost entirely
unchanged. Stopify will provide the following features:

	Stopify will support long-running L programs without freezing the browser
tab. In particular, programs can access the DOM and are not limited to
Web Workers.

	Stopify can pause or terminate an L program, even if it is an infinite
loop.

	Stopify can set breakpoints or single-step through the L program, if
C generates source maps.

	Stopify can simulate an arbitrarily deep stack and proper
tail calls. This feature is necessary to run certain functional programs
in the browser.

	Stopify can simulate blocking operations on the web.

In many cases, it is possible to “blindly” use Stopify by applying it to the
output of your compiler. However, Stopify will compile faster, produce faster
code, and support more features, if your compiler cooperates with Stopify in
particular ways. This manual will guide you through using Stopify with your own
compiler.

Warning

This manual is a work in progress. Many Stopify features remain undocumented. We
will preserve the interfaces documented here in subsequent releases of Stopify.

Acknowledgements

Stopify draws inspiration from several existing systems, including debug.js,
Doppio, Gambit.js, Pyret, scheme2js, Unwinder, and WeScheme. We thank Emery
Berger, Benjamin Lerner, Robert Powers, and John Vilk for insightful
discussions. We thank Caitlin Santone for designing the Stopify logo.

Quick Start

This section guides you through installing Stopify and applying it to a simple
JavaScript program that runs forever and periodically prints the current time.
However, since the program never yields control to the browser’s event loop
(e.g., using setTimeout), nothing will appear on the page and the browser
tab will eventually crash. Stopify will make this program behave more naturally
and actually show the output.

Instructions

	Install the Stopify executable using NPM (or Yarn):

npm install -g stopify

	Save the following program to the file input.js.

const elt = document.createElement("div");
document.body.appendChild(elt);

var i = 0;
var j = 0;
while (true) {
 if (i++ == 10000000) {
 j++;
 elt.innerText = "Still running ... " + (new Date());
 i = 0;
 }
}

This program will make any web browser crash.

	Use the Stopify compiler to stopify the program:

stopify input.js output.js

	The Stopify installation includes a copy of the Stopify runtime system
(stopify.bundle.js). Look up the path using the following command:

stopify-path stopify.bundle.js

	Create a simple web page that first loads the Stopify runtime system (i.e.,
the path produced in the previous step) and then uses the runtime system to
load the saved file. An example is given below.

<html>
 <body>
 <script src="stopify.bundle.js"></script>
 <script>
 var runner = stopify.stopify("output.js");
 runner.run(() => console.log("done"));
 </script>
 </body>
</html>

Testing

Finally, open the page in any browser. You’ll find that the program “just
works” and periodically prints the current time. In contrast, if you load
input.js directly, it will not print anything and will eventually crash the
browser tab.

Overview

The stopify package includes several components:

	A command-line compiler (the stopify executable).

	A compiler that can be used as a library from Node.

	A runtime system that is bundled for use in the browser. You can get the
local path of this bundle using the following command:

stopify-path stopify.bundle.js

	A compiler and runtime system that are bundled for the browser. This bundle
has a lot more code than the runtime-only bundle. However, running Stopify in
the browser is useful if your users have spotty Internet connections. You can
get the local path of this bundle using the following command:

stopify-path stopify-full.bundle.js

Note that Quick Start presented the command-line compiler with the
runtime-only bundle. The rest of this manual presents other ways to use
Stopify.

The Command-Line Compiler

The Stopify CLI compiler requires the name of the input file and the name of
the output file. In addition, the compiler has several optional flags:

stopify [flags] input.js output.js

The optional flags are:

	-t or --transform selects the continuation implementation to use
(Transformation (.captureMethod)).

	-n or --new selects the encoding for constructors (Constructor Encoding (.newMethod)).

	--eval or --no-eval determine if JavaScript’s eval is supported
(Eval Support (.eval)).

	--es determines if JavaScript’s implicit operations are supported (Implicit Operations (.es)).

	--hofs determines if JavaScript’s builtin higher-order functions are
supported (Higher Order Functions (.hofs)).

	--js-args determines how faithfully Stopify should support the
arguments object (Fidelity of arguments (.jsArgs)).

	--getters or --no-getters determine if Stopify should support getters
and setters (Getters and Setters (.getters)).

	--debug: should Stopify support single-step debugging (Single-stepping and Breakpointing (.debug)).

If a flag is not set, Stopify picks a default value that is documented in the
subsection for each flag. By default, Stopify is not completely faithful to
the semantics of JavaScript (certain JavaScript features are difficult to
support and incur a high runtime cost). Instead, Stopify’s default values work
with a number of compilers that we’ve tested. By default, Stopify does not
support getters, setters, eval, builtin higher-order functions, implicit
operations, arguments-object aliasing, and single-stepping. If you think
you may need these features, you will need to set their corresponding flags.

To load a compiled file in the browser, the Stopify runtime provides the
following function:

stopify.stopify(url: string, opts?: RuntimeOpts): AsyncRun

Above, url should be the address of the compiled file (i.e., hosted on your
web server) and url is an optional runtime configuration (Runtime Configuration). The result
of this function is an AsyncRun object (The AsyncRun Interface).

Runtime Configuration

The Stopify runtime system takes a dictionary of options with the following
type:

interface RuntimeOpts {
 estimator?: "velocity" | "reservoir" | "exact" | "countdown",
 yieldInterval?: number /* must be greater than zero */,
 stackSize?: number /* must be greater than zero */
 restoreFrames?: number /* must be greater than zero */
}

The first two options control how frequently Stopify yields control to the
browser (yieldInterval) and the mechanism that it uses to determine elapsed
time (estimator). The last two options can be used to simulate a larger
stack than what JavaScript natively provides.

Time estimator (.estimator)

By default, Stopify uses the velocity estimator that samples the current
time (using Date.now()) and tries to yield every 100 milliseconds. The
velocity estimator dynamically measures the achieved yield interval and
adapts how frequently it yields accordingly. This mechanism is inexact, but
performs well. You can adjust the yield interval, but we do not recommend using
a value lower than 100.

The reservoir estimator samples the current time using reservoir sampling
(i.e., the probability of resampling the current time decreases as the program
runs longer). This technique is less robust than velocity to fluctuations
in program behavior, but still outperforms other methods. This usually has a
lower runtime overhead than velocity, but sacrifices accuracy. We recommend
velocity for a more general, nondeterministic estimator.

The countdown estimator yields after exactly n yield points have passed.
With this estimator, the yieldInterval is interpreted as the value of n
and not a duration. We do not recommend using this estimator in practice, since
a good value of n will depend on platform performance and program
characteristics that are very hard to predict. However, it is useful for
reproducing bugs in Stopify, since the velocity estimator is
nondeterministic.

Finally, the exact estimator checks the current time at every yield point,
instead of sampling the time. This has a higher runtime overhead than
velocity and we do not recommend it.

Unbounded stacks (.stackSize and .restoreFrames)

On certain browsers, the JavaScript stack is very shallow. This is a problem
for programming languages that rely heavily on recursion (e.g., idiomatic
functional code). If this is not a concern, you can ignore these options.

To support heavily recursion code, Stopify can spill stack frames on to the
heap. Therefore, a program will never throw a stack overflow error (however,
it may run out of memory). To do so, it tracks the depth of the JavaScript
stack and spills stack frames when the stack depth exceeds stackSize.
Similarly, when resuming computation, the restoreFrames parameter
determines how many saved stack frames are turned into JavaScript stack frames.

To maximize performance, stackSize should be as high as possible and
restoreFrames should be equal to stackSize. The largest possible value
of stackSize depends on the source language and browser. In our experience,
a value of 500 works well.

The AsyncRun Interface

interface AsyncRun {
 run(onDone: () => void,
 onYield?: () => void,
 onBreakpoint?: (line: number) => void): void;
 pause(onPaused: (line?: number) => void): void;
 resume(): void;
 setBreakpoints(line: number[]): void;
 step(onStep: (line: number) => void): void;
 pauseImmediate(callback: () => void): void;
 continueImmediate(result: any): void;
}

The AsyncRun interface provides methods to run, stop, and control the
execution of a stopified program. The interface provides several methods, none
of which should be used directly by the stopified program. The following
methods are meant to be used by the driver program that controls execution
(e.g., a web-based IDE):

	The run method starts execution and requires a callback that gets invokes
when execution completes. You may provide optional callbacks that are invoked
when the program yields control and when a breakpoint is reached.

	The setBreakpoint method sets the active breakpoints.

	The pause method pauses the program at the next yield point and requires
an optional callback that is invoked when the program has paused.

	The resume method resumes execution after a pause.

	The step method resumes execution and pauses again at the next yield
point.

The following methods are are meant to be used by non-blocking JavaScript
functions to provide simulated blocking interface to the stopified program:

	The pauseImmediate method suspends the stopified program and invokes the
provided callback. A function should not execute anything after invoking
pauseImmediate. Typically, a function that uses pauseImmediate will
use it in a return statement.

	The continueImmediate function resumes execution with the provided value.

Illustrative Examples has several examples that use these methods to implement simulated blocking
operations.

The Online Compiler

The file stopify-full.bundle.js packages the compiler and runtime system
for use the browser. You can get the local path of this bundle using the
following command:

stopify-path stopify-full.bundle.js

This bundle exposes the following function:

stopify.stopifyLocally(url: string, copts?: CompileOpts, ropts?: RuntimeOpts): AsyncRun

The optional CompilerOpts is dictionary with the following type:

interface CompilerOpts {
 getters?: boolean,
 debug?: boolean,
 captureMethod?: "lazy" | "retval" | "eager" | "original",
 newMethod?: "wrapper" | "direct",
 eval?: boolean,
 es?: "sane" | "es5",
 hofs: "builtin" | "fill",
 jsArgs?: "simple" | "faithful" | "full",
 externals?: string[]
}

Compiler Configuration

You can configure the Stopify compiler in several ways. Some of these options
only affect performance, whereas other options affect the sub-language of
JavaScript that the compiler targets.

Transformation (.captureMethod)

Stopify uses first-class continuations as a primitive to implement its
execution control features. Stopify can represent continuations in several
ways; the fastest approach depends on the application and the browser. The
valid options are "lazy", "retval", "eager", and "original".
For most cases, we recommend using "lazy".

Constructor Encoding (.newMethod)

Stopify implements two mechanisms to support suspending execution within the
dynamic extent of a constructor call.

	"wrapper" desugars all new expressions to ordinary function calls,
using Object.create.

	"direct" preserves new expressions, but instruments all functions to
check if they are invoked as constructors, using new.target.

The fastest approach depends on the browser. We recommend using wrapper.

Eval Support (.eval)

How should Stopify handle JavaScript’s eval function? By default, this flag
is false and Stopify leaves eval unchanged. Since Stopify typically
does not rename variables, using a stopfied program can use eval, but the
evaluated code may lock-up the browser if it has an infinite loop.

If set to true, Stopify rewrites calls to JavaScript’s eval function to
invoke the Stopify compiler. (Note: Stopify does not rewrite new Function
and dynamically generated <script> tags.) This allows Stopify to control
execution in dynamically generated code. Naturally, this requires the online
compiler. However, the feature incurs considerable overhead.

Implicit Operations (.es)

Stopify can suspend execution within user-written valueOf() and
toString() methods that JavaScript invokes implicitly.

For example, the following program is an infinite loop in JavaScript:

var x = { toString: function() { while(true) { } } };
x + 1;

With the implicit operations flag is set to "es5", Stopify will be able to
gracefully suspend the program above. With the flag set to "sane", Stopify
will not be able to detect the the infinite loop. We have found that most
source language compilers do not rely on implicit operations, thus it is
usually safe to use "sane".

Fidelity of arguments (.jsArgs)

The arguments object makes it difficult for Stopify to resume execution
after suspension. Stopify supports arguments in full, but it also supports
two simple special cases that improve performance.

	Use "simple" if the program (1) does not use arguments to access
declared formal arguments and (2) only reads additional arguments using the
arguments object.

	Use "faithful" if the program (1) does not use arguments to access
declared formal arguments and (2) may read or write additional arguments
using the arguments object.

	Use "full" for full support of JavaScript’s arguments object.

Higher Order Functions (.hofs)

Programs cannot use bulitin higher-order functions (e.g., .map,
.filter, etc.) with Stopify, since Stopify cannot instrument native code.
The .hofs flag has two possible values:

	Use "builtin" if the program does not use any native higher-order
functions.

	Use "fill" to have Stopify rewrite programs that use native higher-order
functions to use polyfills written in JavaScript.

Getters and Setters (.getters)

Programs that suspend execution within getters/setters incur a lot of overhead
with Stopify. The .getters flag has two possible values:

	Use true to have Stopify instrument the program to support suspension
within getters and setters.

	Use false if the program does not use getters and setters.

Single-stepping and Breakpointing (.debug)

Set .debug to true to enable support for single-stepping and
breakpointing. However, note that this requires more instrumentation and slows
the program down further.

Illustrative Examples

This chapter presents several examples that showcase Stopify’s features.

A Blocking sleep Function

The browser does not have a blocking sleep function. However, we can use
window.setTimeout and Stopify to simulate a blocking sleep operation:

function sleep(duration) {
 asyncRun.pauseImmediate(() => {
 window.setTimeout(() => asyncRun.continueImmediate(undefined), duration);
 });
}

In the code above, asyncRun is an instance of AsyncRun
(The AsyncRun Interface). Note that this function should be stopified itself and needs
to be declared as an external. A complete example of a page that uses sleep
is shown below.

<html>
 <body>
 <script src="../../stopify/dist/stopify-full.bundle.js"></script>
 <script>
 function sleep(duration) {
 asyncRun.pauseImmediate(() => {
 window.setTimeout(() => asyncRun.continueImmediate(undefined), duration);
 });
 }

 const program = `
 while(true) {
 sleep(1000);
 document.body.appendChild(document.createTextNode("."));
 }
 `;

 const asyncRun = stopify.stopifyLocally(
 `(function(){ ${program} })()`,
 { externals: ["sleep", "document"] });

 asyncRun.run(() => { });
 </script>
 </body>
</html>

This program runs forever and prints a period each second.

A Blocking prompt Function

The prompt and alert functions that are built-in to browsers are not
the ideal way to receive input from the user. First, modal dialog boxes are
unattractive; second, a user can dismiss them; and finally, if a page displays
too many modal dialog boxes, the browser can give the user to suppress all of
them.

<html>
<body>
 <div id="webConsole"></div>
 <script src="../../stopify/dist/stopify-full.bundle.js"></script>
 <script>
 const webConsole = document.getElementById('webConsole');

 function alert(message) {
 const div = document.createElement('div');
 div.appendChild(document.createTextNode(message));
 webConsole.appendChild(div);
 }

 function prompt() {
 return runner.pauseImmediate(() => {
 const div = document.createElement('div');
 div.appendChild(document.createTextNode('> '));
 const input = document.createElement('input');
 div.appendChild(input);
 // When ENTER pressed, replace the <input> with plain text
 input.addEventListener('keypress', (event) => {
 if (event.keyCode === 13) {
 const value = input.value;
 div.appendChild(document.createTextNode(value));
 div.removeChild(input);
 runner.continueImmediate(value);
 }
 });
 webConsole.appendChild(div);
 input.focus();
 });
 }

 const program = `
 alert("Enter the first number");
 var x = Number(prompt());
 alert("Enter the second number");
 var y = Number(prompt());
 alert("Result is " + (x + y));
 `;

 const runner = stopify.stopifyLocally(
 `(function(){ ${program} })()`,
 { externals: ['prompt', 'alert', 'pormpt'] });

 runner.run(() => console.log('program complete'));
 </script>
</body>
</html>

This program prompts the user for two inputs without modal dialog boxes.

Release Notes

Stopify (working version)

	Exposed the velocity estimator and set it as the default instead of
reservoir. In our experiments, velocity performs better and has
negligible overhead.

	Added the .stackSize and .restoreFrames runtime options, which allow
Stopify to simulate an arbitrarily deep stack.

	Fixed a bug where programs that used return or throw in the
default: case of a switch statement would not resume correctly.

Stopify 0.1.0

	Initial release

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Stopify

 		
 Acknowledgements

 		
 Quick Start

 		
 Instructions

 		
 Testing

 		
 Overview

 		
 The Command-Line Compiler

 		
 Runtime Configuration

 		
 Time estimator (.estimator)

 		
 Unbounded stacks (.stackSize and .restoreFrames)

 		
 The AsyncRun Interface

 		
 The Online Compiler

 		
 Compiler Configuration

 		
 Transformation (.captureMethod)

 		
 Constructor Encoding (.newMethod)

 		
 Eval Support (.eval)

 		
 Implicit Operations (.es)

 		
 Fidelity of arguments (.jsArgs)

 		
 Higher Order Functions (.hofs)

 		
 Getters and Setters (.getters)

 		
 Single-stepping and Breakpointing (.debug)

 		
 Illustrative Examples

 		
 A Blocking sleep Function

 		
 A Blocking prompt Function

 		
 Release Notes

 		
 Stopify (working version)

 		
 Stopify 0.1.0

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/logo.png

_static/ajax-loader.gif

